焊接:也稱作熔接、镕接,是一種以加熱、高溫或者高壓的方式接合金屬或其他熱塑性材料如塑料的制造工藝及技術(shù)。 焊接通過下列三種途徑達成接合的目的:
1、熔焊——加熱欲接合之工件使之局部熔化形成熔池,熔池冷卻凝固后便接合,必要時可加入熔填物輔助,它是適合各種金屬和合金的焊接加工,不需壓力。
2、壓焊——焊接過程必須對焊件施加壓力,屬于各種金屬材料和部分金屬材料的加工。
3、釬焊——采用比母材熔點低的金屬材料做釬料,利用液態(tài)釬料潤濕母材,填充接頭間隙,并與母材互相擴散實現(xiàn)鏈接焊件。適合于各種材料的焊接加工,也適合于不同金屬或異類材料的焊接加工。
現(xiàn)代焊接的能量來源有很多種,包括氣體焰、電弧、激光、電子束、摩擦和超聲波等。除了在工廠中使用外,焊接還可以在多種環(huán)境下進行,如野外、水下和太空。無論在何處,焊接都可能給操作者帶來危險,所以在進行焊接時必須采取適當?shù)姆雷o措施。焊接給人體可能造成的傷害包括燒傷、觸電、視力損害、吸入有毒氣體、紫外線照射過度等。
中文名:焊接
外文名:Welding
也稱作:熔接、镕接
焊接工藝:氣焊、電阻焊、電弧焊
用 途:接合
19世紀末之前,唯一的焊接工藝是鐵匠沿用了數(shù)百年的金屬鍛焊。最早的現(xiàn)代焊接技術(shù)出現(xiàn)在19世紀末,先是弧焊和氧燃氣焊,稍后出現(xiàn)了電阻焊。
20世紀早期,第一次世界大戰(zhàn)和第二次世界大戰(zhàn)中對軍用設(shè)備的需求量很大,與之相應(yīng)的廉價可靠的金屬連接工藝受到重視,進而促進了焊接技術(shù)的發(fā)展。戰(zhàn)后,先后出現(xiàn)了幾種現(xiàn)代焊接技術(shù),包括目前最流行的手工電弧焊、以及諸如熔化極氣體保護電弧焊、埋弧焊(潛弧焊)、藥芯焊絲電弧焊和電渣焊這樣的自動或半自動焊接技術(shù)。
20世紀下半葉,焊接技術(shù)的發(fā)展日新月異,激光焊接和電子束焊接被開發(fā)出來。今天,焊接機器人在工業(yè)生產(chǎn)中得到了廣泛的應(yīng)用。研究人員仍在深入研究焊接的本質(zhì),繼續(xù)開發(fā)新的焊接方法,并進一步提高焊接質(zhì)量。
金屬連接的歷史可以追溯到數(shù)千年前,早期的焊接技術(shù)見于青銅時代和鐵器時代的歐洲和中東。數(shù)千年前的古巴比倫兩河文明已開始使用軟釬焊技術(shù)。公元前340年,在制造重達5.4噸的古印度德里鐵柱時,人們就采用了焊接技術(shù) 。
中世紀的鐵匠通過不斷鍛打紅熱狀態(tài)的金屬使其連接,該工藝被稱為鍛焊。維納重·比林格塞奧于1540年出版的《火焰學(xué)》一書記述了鍛焊技術(shù)。歐洲文藝復(fù)興時期的工匠已經(jīng)很好地掌握了鍛焊,接下來的幾個世紀中,鍛焊技術(shù)不斷改進。到19世紀時,焊接技術(shù)的發(fā)展突飛猛進,其風(fēng)貌大為改觀。1800年,漢弗里·戴維爵士發(fā)現(xiàn)了電;稍后隨著俄國科學(xué)家尼庫萊·斯拉夫耶諾夫與美國科學(xué)家C·L·哥芬(C. L. Coffin)發(fā)明的金屬電極推動了電弧焊工藝的成型。電弧焊與后來開發(fā)的采用碳質(zhì)電極的碳弧焊,在工業(yè)生產(chǎn)上得到廣泛應(yīng)用。1900年左右,A·P·斯特羅加諾夫在英國開發(fā)出可以提供更穩(wěn)定電弧的金屬包敷層碳電極;1919年,C·J·霍爾斯拉格(C. J. Holslag)首次將交流電用于焊接,但這一技術(shù)直到十年后才得到廣泛應(yīng)用。
電阻焊在19世紀的最后十年間被開發(fā)出來,第一份關(guān)于電阻焊的專利是伊萊休·湯姆森于1885年申請的,他在接下來的15年中不斷地改進這一技術(shù)。鋁熱焊接和可燃氣焊接發(fā)明于1893年。埃德蒙·戴維于1836年發(fā)現(xiàn)了乙炔,到1900年左右,由于一種新型氣炬的出現(xiàn),可燃氣焊接開始得到廣泛的應(yīng)用。由于廉價和良好的移動性,可燃氣焊接在一開始就成為最受歡迎的焊接技術(shù)之一。但是隨著20世紀之中,工程師們對電極表面金屬敷蓋技術(shù)的持續(xù)改進(即助焊劑的發(fā)展),新型電極可以提供更加穩(wěn)定的電弧,并能夠有效地隔離基底金屬與雜質(zhì),電弧焊因此能夠逐漸取代可燃氣焊接,成為使用最廣泛的工業(yè)焊接技術(shù)。
第一次世界大戰(zhàn)使得對焊接的需求激增,各國都在積極研究新型的焊接技術(shù)。英國主要采用弧焊,他們制造了第一艘全焊接船體的船舶弗拉戈號。大戰(zhàn)期間,弧焊亦首次應(yīng)用在飛機制造上,如許多德國飛機的機體就是通過這種方式制造的。 另外值得注意的是,世界上第一座全焊接公路橋于1929年在波蘭沃夫其附近的S?udwia Maurzyce河上建成,該大橋是由華沙工業(yè)學(xué)院的斯特藩·布萊林(Stefan Bry?a)于1927年設(shè)計的。
1920年代,焊接技術(shù)獲得重大突破。1920年出現(xiàn)了自動焊接,通過自動送絲裝置來保證電弧的連貫性。保護氣體在這一時期得到了廣泛的重視。因為在焊接過程中,處于高溫狀態(tài)下的金屬會與大氣中的氧氣和氮氣發(fā)生化學(xué)反應(yīng),因此產(chǎn)生的空泡和化合物將影響接頭的強度。解決方法是,使用氫氣、氬氣、氦氣來隔絕熔池和大氣。接下來的10年中,焊接技術(shù)的進一步發(fā)展使得諸如鋁和鎂這樣的活性金屬也能焊接。1930年代至第二次世界大戰(zhàn)期間,自動焊、交流電和活性劑的引入大大促進了弧焊的發(fā)展。
20世紀中葉,科學(xué)家及工程師們發(fā)明了多種新型焊接技術(shù)。 1930年發(fā)明的螺柱焊接(植釘焊),很快就在造船業(yè)和建筑業(yè)中廣泛使用。同年發(fā)明的埋弧焊,直到今天還很流行。鎢極氣體保護電弧焊在經(jīng)過幾十年的發(fā)展后,終于在1941年得以最終完善。隨后在1948年,熔化極氣體保護電弧焊使得有色金屬的快速焊接成為可能,但這一技術(shù)需要消耗大量昂貴的保護氣體。采用消耗性焊條作為電極的手工電弧焊是在1950年代發(fā)展起來的,并迅速成為最流行的金屬弧焊技術(shù)。 1957年,藥芯焊絲電弧焊首次出現(xiàn),它采用的自保護焊絲電極可用于自動化焊接,大大提高了焊接速度。同一年,等離子弧焊發(fā)明。電渣焊發(fā)明于1958年,氣電焊則于1961年發(fā)明。
焊接技術(shù)在近年來的發(fā)展包括:1958年的電子束焊接能夠加熱面積很小的區(qū)域,使得深處和狹長形工件的焊接成為可能。其后激光焊接于1960年發(fā)明,在其后的幾十年歲月中,它被證明是最有效的高速自動焊接技術(shù)。不過,電子束焊與激光焊兩種技術(shù)由于其所需配備價格高昂,其應(yīng)用范圍受到限制。
金屬焊接
焊接工藝分類
焊接過程中,工件和焊料熔化形成熔融區(qū)域,熔池冷卻凝固后便形成材料之間的連接。這一過程中,通常還需要施加壓力。焊接的能量來源有很多種,包括氣體焰、電弧、激光、電子束、摩擦和超聲波等。19世紀末之前,唯一的焊接工藝是鐵匠沿用了數(shù)百年的金屬鍛焊。最早的現(xiàn)代焊接技術(shù)出現(xiàn)在19世紀末,先是弧焊和氧燃氣焊,稍后出現(xiàn)了電阻焊。20世紀早期,隨著第一次和第二次世界大戰(zhàn)開戰(zhàn),對軍用器材廉價可靠的連接方法需求極大,故促進了焊接技術(shù)的發(fā)展。今天,隨著焊接機器人在工業(yè)應(yīng)用中的廣泛應(yīng)用,研究人員仍在深入研究焊接的本質(zhì),繼續(xù)開發(fā)新的焊接方法,以進一步提高焊接質(zhì)量。
焊接物理本質(zhì)
焊接是兩種或兩種以上同種或異種材料通過原子或分子之間的結(jié)合和擴散連接成一體的工藝過程.
促使原子和分子之間產(chǎn)生結(jié)合和擴散的方法是加熱或加壓,或同時加熱又加壓.
焊接焊接的分類
金屬的焊接,按其工藝過程的特點分有熔焊,壓焊和釬焊三大類.
在熔焊的過程中,如果大氣與高溫的熔池直接接觸的話,大氣中的氧就會氧化金屬和各種合金元素。大氣中的氮、水蒸汽等進入熔池,還會在隨后冷卻過程中在焊縫中形成氣孔、夾渣、裂紋等缺陷,惡化焊縫的質(zhì)量和性能。
為了提高焊接質(zhì)量,人們研究出了各種保護方法。例如,氣體保護電弧焊就是用氬、二氧化碳等氣體隔絕大氣,以保護焊接時的電弧和熔池率;又如鋼材焊接時,在焊條藥皮中加入對氧親和力大的鈦鐵粉進行脫氧,就可以保護焊條中有益元素錳、硅等免于氧化而進入熔池,冷卻后獲得優(yōu)質(zhì)焊縫。
各種壓焊方法的共同特點,是在焊接過程中施加壓力,而不加填充材料。多數(shù)壓焊方法,如擴散焊、高頻焊、冷壓焊等都沒有熔化過程,因而沒有像熔焊那樣的,有益合金元素?zé)龘p和有害元素侵入焊縫的問題,從而簡化了焊接過程,也改善了焊接安全衛(wèi)生條件。同時由于加熱溫度比熔焊低、加熱時間短,因而熱影響區(qū)小。許多難以用熔化焊焊接的材料,往往可以用壓焊焊成與母材同等強度的優(yōu)質(zhì)接頭。
焊接時形成的,連接兩個被連接體的接縫稱為焊縫。焊縫的兩側(cè)在焊接時,會受到焊接熱作用,而發(fā)生了組織和性能變化,這一區(qū)域被稱作為熱影響區(qū)。焊接時因工件材料焊接材料、焊接電流等方面的不同。惡化焊接性這就需要調(diào)整焊接的條件,焊前對焊件接口處的預(yù)熱、焊時保溫和焊后熱處理,可以改善焊件的焊接質(zhì)量。
另外,焊接是一個局部的迅速加熱和冷卻過程,焊接區(qū)由于受到四周工件本體的拘束而不能自由膨脹和收縮,冷卻后在焊件中便產(chǎn)生焊接應(yīng)力和變形。重要產(chǎn)品焊后都需要消除焊接應(yīng)力,矯正焊接變形。
現(xiàn)代焊接技術(shù)已能焊出無內(nèi)外缺陷的、機械性能等于甚至高于被連接體的焊縫。被焊接體在空間的相互位置稱為焊接接頭,接頭處的強度除受焊縫質(zhì)量影響外,還與其幾何形狀、尺寸、受力情況和工作條件等有關(guān)。接頭的基本形式有對接、搭接、丁字接(正交接)和角接等。
對接接頭焊縫的橫截面形狀,決定于被焊接體在焊接前的厚度和兩接邊的坡口形式。焊接較厚的鋼板時,為了焊透而在接邊處開出各種形狀的坡口,以便較容易地送入焊條或焊絲。坡口形式有單面施焊的坡口和兩面施焊的坡口。選擇坡口形式時,除保證焊透外還應(yīng)考慮施焊方便,填充金屬量少,焊接變形小和坡口加工費用低等因素。
厚度不同的兩塊鋼板對接時,為避免截面急劇變化引起嚴重的應(yīng)力集中,常把較厚的板邊逐漸削薄,達到兩接邊處等厚。對接接頭的靜強度和疲勞強度比其他接頭高。在交變、沖擊載荷下或在低溫高壓容器中工作的聯(lián)接,常優(yōu)先采用對接接頭的焊接。
搭接接頭的焊前準備工作簡單,裝配方便,焊接變形和殘余應(yīng)力較小,因而在工地安裝接頭和不重要的結(jié)構(gòu)上時常采用。一般來說,搭接接頭不適于在交變載荷、腐蝕介質(zhì)、高溫或低溫等條件下工作。
采用丁字接頭和角接頭通常是由于結(jié)構(gòu)上的需要。丁字接頭上未焊透的角焊縫工作特點與搭接接頭的角焊縫相似。當焊縫與外力方向垂直時便成為正面角焊縫,這時焊縫表面形狀會引起不同程度的應(yīng)力集中;焊透的角焊縫受力情況與對接接頭相似。
角接頭承載能力低,一般不單獨使用,只有在焊透時,或在內(nèi)外均有角焊縫時才有所改善,多用于封閉形結(jié)構(gòu)的拐角處。
焊接產(chǎn)品比鉚接件、鑄件和鍛件重量輕,對于交通運輸工具來說可以減輕自重,節(jié)約能量。焊接的密封性好,適于制造各類容器。發(fā)展聯(lián)合加工工藝,使焊接與鍛造、鑄造相結(jié)合,可以制成大型、經(jīng)濟合理的鑄焊結(jié)構(gòu)和鍛焊結(jié)構(gòu),經(jīng)濟效益很高。采用焊接工藝能有效利用材料,焊接結(jié)構(gòu)可以在不同部位采用不同性能的材料,充分發(fā)揮各種材料的特長,達到經(jīng)濟、優(yōu)質(zhì)。焊接已成為現(xiàn)代工業(yè)中一種不可缺少,而且日益重要的加工工藝方法。
在近代的金屬加工中,焊接比鑄造、鍛壓工藝發(fā)展較晚,但發(fā)展速度很快。焊接結(jié)構(gòu)的重量約占鋼材產(chǎn)量的45%,鋁和鋁合金焊接結(jié)構(gòu)的比重也不斷增加。
未來的焊接工藝,一方面要研制新的焊接方法、焊接設(shè)備和焊接材料,以進一步提高焊接質(zhì)量和安全可靠性,如改進現(xiàn)有電弧、等離子弧、電子束、激光等焊接能源;運用電子技術(shù)和控制技術(shù),改善電弧的工藝性能,研制可靠輕巧的電弧跟蹤方法。
另一方面要提高焊接機械化和自動化水平,如焊機實現(xiàn)程序控制、數(shù)字控制;研制從準備工序、焊接到質(zhì)量監(jiān)控全部過程自動化的專用焊機;在自動焊接生產(chǎn)線上,推廣、擴大數(shù)控的焊接機械手和焊接機器人,可以提高焊接生產(chǎn)水平,改善焊接衛(wèi)生安全條件。
焊接演變過程
焊接技術(shù)是隨著銅鐵等金屬的冶煉生產(chǎn)、各種熱源的應(yīng)用而出現(xiàn)的。古代的焊接方法主要是鑄焊、釬焊、鍛焊、鉚焊。公元前2500年前古巴比倫人和印度河文明對銅鐵金屬的熱加工和冷加工都已達到較高的水平,能用鍛焊、鑄焊等焊接法制造金屬器具,并刻有文字。這時代表性的文化是哈拉帕文化。
中國商朝制造的鐵刃銅鉞,就是鐵與銅的鑄焊件,其表面銅與鐵的熔合線婉蜒曲折,接合良好。春秋戰(zhàn)國時期曾侯乙墓中的建鼓銅座上有許多盤龍,是分段釬焊連接而成的。經(jīng)分析,所用的與現(xiàn)代軟釬料成分相近。戰(zhàn)國時期制造的刀劍,刀刃為鋼,刀背為熟鐵,一般是經(jīng)過加熱鍛焊而成的。據(jù)明朝宋應(yīng)星所著《天工開物》一書記載:中國古代將銅和鐵一起入爐加熱,經(jīng)鍛打制造刀、斧;用黃泥或篩細的陳久壁土撒在接口上,分段煅焊大型船錨。中世紀,在敘利亞大馬士革也曾用鍛焊制造兵器。
焊接近代發(fā)展
古代焊接技術(shù)長期停留在鑄焊、鍛焊、釬焊和鉚焊的水平上,使用的熱源都是爐火,溫度低、能量不集中,無法用于大截面、長焊縫工件的焊接,只能用以制作裝飾品、簡單的工具、生活器具和武器。
19世紀初,英國的戴維斯發(fā)現(xiàn)電弧和氧乙炔焰兩種能局部熔化金屬的高溫?zé)嵩矗?885~1887年,俄國的別納爾多斯發(fā)明碳極電弧焊鉗;1900年又出現(xiàn)了鋁熱焊。
20世紀初,碳極電弧焊和氣焊得到應(yīng)用,同時還出現(xiàn)了薄藥皮焊條電弧焊,電弧比較穩(wěn)定,焊接熔池受到熔渣保護,焊接質(zhì)量得到提高,使手工電弧焊進入實用階段,電弧焊從20年代起成為一種重要的焊接方法。也成為現(xiàn)代焊接工藝的發(fā)展開端。在此期間,美國的諾布爾利用電弧電壓控制焊條送給速度,制成自動電弧焊機,從而成為焊接機械化、自動化的開端。1930年美國的羅賓諾夫發(fā)明使用焊絲和焊劑的埋弧焊,焊接機械化得到進一步發(fā)展。40年代,為適應(yīng)鋁、鎂合金和合金鋼焊接的需要,鎢極和熔化極惰性氣體保護焊相繼問世。
1951年蘇聯(lián)的巴頓電焊研究所創(chuàng)造電渣焊,成為大厚度工件的高效焊接法。1953年,蘇聯(lián)的柳巴夫斯基等人發(fā)明二氧化碳氣體保護焊,促進了氣體保護電弧焊的應(yīng)用和發(fā)展,如出現(xiàn)了混合氣體保護焊、藥芯焊絲氣渣聯(lián)合保護焊和自保護電弧焊等。1957年美國的蓋奇發(fā)明等離子弧焊;40年代德國和法國發(fā)明的電子束焊,也在50年代得到實用和進一步發(fā)展;60年代又出現(xiàn)激光焊等離子、電子束和激光焊接方法的出現(xiàn),標志著高能量密度熔焊的新發(fā)展,大大改善了材料的焊接性,使許多難以用其他方法焊接的材料和結(jié)構(gòu)得以焊接。
其他的焊接技術(shù)還有1887年,美國的湯普森發(fā)明電阻焊,并用于薄板的點焊和縫焊;縫焊是壓焊中最早的半機械化焊接方法,隨著縫焊過程的進行,工件被兩滾輪推送前進;二十世紀世紀20年代開始使用閃光對焊方法焊接棒材和鏈條。至此電阻焊進入實用階段。1956年,美國的瓊斯發(fā)明超聲波焊;蘇聯(lián)的丘季科夫發(fā)明摩擦焊;1959年,美國斯坦福研究所研究成功爆炸焊;50年代末蘇聯(lián)又制成真空擴散焊設(shè)備。
工業(yè)藝術(shù)
焊接的出現(xiàn)迎合了金屬藝術(shù)發(fā)展對新工藝手段的需要。
藝術(shù)創(chuàng)造與工藝方法,永遠是密不可分的。作為一種工業(yè)技術(shù),焊接的出現(xiàn),迎合了金屬藝術(shù)發(fā)展對新的工藝手段的需要。而在另一方面,金屬在焊接熱量作用下,所產(chǎn)生的獨特美妙的變化,也滿足了金屬藝術(shù)對新的藝術(shù)表現(xiàn)語言的需求。在今天的金屬藝術(shù)創(chuàng)作中,焊接正在被作為一種獨特的藝術(shù)表現(xiàn)語言而著力加以表現(xiàn)。金屬焊接藝術(shù),可以作為一種相對獨立的藝術(shù)形式,以分支的方式從傳統(tǒng)的金屬藝術(shù)中分離出來,這是因為焊接具有藝術(shù)性。
焊接,可以產(chǎn)生豐富的藝術(shù)創(chuàng)作的表現(xiàn)語言。焊接通常是在高溫下進行的,而金屬在高溫下,會產(chǎn)生許多美妙豐富的變化。金屬母材會發(fā)生顏色變化和熱變形(即焊接熱影響區(qū)) ;焊絲熔化后會形成一些漂亮的肌理;而焊接缺陷在焊接藝術(shù)中更是經(jīng)常被應(yīng)用。焊接缺陷是指焊接過程中,在焊接接頭產(chǎn)生的不符合設(shè)計或工藝要求的缺陷。其表現(xiàn)形式主要有焊接裂紋、氣孔、咬邊、未焊透、未熔合、夾渣、焊瘤、塌陷、凹坑、燒穿、夾雜等這是個十分有趣的現(xiàn)象 :在今天的金屬藝術(shù)創(chuàng)作中,焊接的藝術(shù)性通常體現(xiàn)在一些工業(yè)焊接的失敗操作之中,或者說蘊藏于一些工業(yè)焊接極力避免的焊接缺陷之中。其次,焊接藝術(shù)語言是獨特的。
一件焊接雕塑,粗的焊縫裸露在雕塑表面,各種不規(guī)則的切割痕跡也變成了藝術(shù)家優(yōu)美的藝術(shù)語言在很多情況下,由于焊接雕塑所追求的粗糙質(zhì)樸的風(fēng)格,金屬的銹蝕、瑕疵也大多根據(jù)作品的需要特意保留,因此,在焊接雕塑中常?梢愿杏X到一種非雕琢的、原始的美。
雕塑下部的鋼板拼接處的焊縫很粗大,從焊接工藝的牢固性來看,這顯然不僅僅是出于對雕塑結(jié)實程度的考慮,在這件雕塑中,下部幾條扭曲的焊縫已經(jīng)作為雕塑整體審美的一個重要因素而成為其不可缺少的一部分。從雕塑整體來看,不論是上半部分的文字造型,還是下半部分的肌理處理,到處有扭曲的焊接痕跡的出現(xiàn),整個作品達到了整體視覺語言的統(tǒng)一。手工等離子切割的方法,利用切割時電流產(chǎn)生的熱量,使切割的邊緣產(chǎn)生熱影響區(qū),這樣的話就給亮白色的不銹鋼“染”上了一圈略帶漸變的色彩了。同時,通過對焊接的規(guī)范的調(diào)節(jié),割槍噴出的強烈氣流,會在切割鋼板熔化的瞬間,在切割邊緣“吹”起一圈隨機形成的肌理。這種隨機效果的形成過程,帶有一定的偶然性,但又是在一定的焊接規(guī)范下,必然產(chǎn)生的現(xiàn)象。從尺寸的角度考慮,尺寸較大的焊接藝術(shù)壁飾,可采用半自動CO2氣體保護焊,較小的可采用手工鎢極氬弧焊。
如果把一幅壁飾作品,看成一幅畫的話,畫面中的點、線、面、黑、白、灰甚至顏色的處理,都可以通過焊接的方法來實現(xiàn)。各種型號、各種材質(zhì)的金屬絲,應(yīng)用不同的焊接工藝,會在畫面上以不同的形式出現(xiàn)。不同金屬的顏色不同,不銹鋼的亮銀色、鋁材的亞銀色、碳鋼的烏亮色,鈦鋼、青銅、紫銅、黃銅而且就鋼材來說,不同的鋼材,在高溫受熱時,會出現(xiàn)不同的顏色變化,即焊接熱影響區(qū)的不同。另外,切割也是焊接藝術(shù)壁飾創(chuàng)作的方法之一,既可以與焊接結(jié)合使用,也可以單獨使用,這完全取決于創(chuàng)作者的創(chuàng)作意圖,和對工藝與效果的掌握程度。以上所述的這些方法綜合起來,變化的豐富可想而知。
焊接塑料焊接
編輯
采用加熱和加壓或其他方法使熱塑性塑料制品的兩個或多個表面熔合成為一個整體的方法。
火災(zāi)、爆炸事故的原因
⑴焊接切割作業(yè)時,尤其是氣體切割時,由于使用壓縮空氣或氧
氣流的噴射,使火星、熔珠和鐵渣四處飛濺(較大的熔珠和鐵渣能飛濺到距操作點5m以外的地方),當作業(yè)環(huán)境中存在易燃、易爆物品或氣體時,就可能會發(fā)生火災(zāi)和爆炸事故。
⑵在高空焊接切割作業(yè)時,對火星所及的范圍內(nèi)的易燃易爆物品未清理干凈,作業(yè)人員在工作過程中亂扔焊條頭,作業(yè)結(jié)束后未認真檢查是否留有火種。
⑶氣焊、氣割的工作過程中未按規(guī)定的要求放置乙炔發(fā)生器,工作前未按要求檢查焊(割)炬、橡膠管路和乙炔發(fā)生器的安全裝置。
⑷氣瓶存在制定方面的不足,氣瓶的保管充灌、運輸、使用等方面存在不足,違反安全操作規(guī)程等。
⑸乙炔、氧氣等管道的制定、安裝有缺陷,使用中未及時發(fā)現(xiàn)和整改其不足。
⑹在焊補燃料容器和管道時,未按要求采取相應(yīng)措施。在實施置換焊補時,置換不徹底,在實施帶壓不置換焊補時壓力不夠致使外部明火導(dǎo)入等。
防范措施
⑴焊接切割作業(yè)時,將作業(yè)環(huán)境10M范圍內(nèi)所有易燃易爆物品清理干凈,應(yīng)注意檢查作業(yè)環(huán)境的地溝、下水道內(nèi)有無可燃液體和可燃氣體,以及是否有可能泄漏到地溝和下水道內(nèi)可燃易爆物質(zhì),以免由于焊渣、金屬火星引起災(zāi)害事故。
⑵高空焊接切割時,禁止亂扔焊條頭,對焊接切割作業(yè)下方應(yīng)進行隔離,作業(yè)完畢應(yīng)做到認真細致的檢查,確認無火災(zāi)隱患后方可離開現(xiàn)場。
⑶應(yīng)使用符合國家有關(guān)標準、規(guī)程要求的氣瓶,在氣瓶的貯存、運輸、使用等環(huán)節(jié)應(yīng)嚴格遵守安全操作規(guī)程。
⑷對輸送可燃氣體和助燃氣體的管道應(yīng)按規(guī)定安裝、使用和管理,對操作人員和檢查人員應(yīng)進行專門的安全技術(shù)培訓(xùn)。
⑸焊補燃料容器和管道時,應(yīng)結(jié)合實際情況確定焊補方法。實施置換法時,置換應(yīng)徹底,工作中應(yīng)嚴格控制可燃物質(zhì)的含影實施帶壓不置換法時,應(yīng)按要求保持一定的電壓。工作中應(yīng)嚴格控制其含氧量。要加強檢測,注意監(jiān)護,要有安全組織措施。
內(nèi)容摘要:作為一種工業(yè)技術(shù),焊接的出現(xiàn)迎合了金屬藝術(shù)發(fā)展對新工藝手段的需要。而在另一方面,金屬在焊接熱量作用下所產(chǎn)生的獨特美妙的變化也滿足了金屬藝術(shù)對新的藝術(shù)表現(xiàn)語言的需求。
關(guān)鍵詞:金屬藝術(shù) 焊接
藝術(shù)創(chuàng)造與工藝方法永遠是密不可分的。作為一種工業(yè)技術(shù),焊接的出現(xiàn)迎合了金屬藝術(shù)發(fā)展對新的工藝手段的需要。
金屬焊接藝術(shù)可以作為一種相對獨立的藝術(shù)形式以分支的方式從傳統(tǒng)的金屬藝術(shù)中分離出來,這是因為:
首先,焊接具有藝術(shù)性。
焊接可以產(chǎn)生豐富的藝術(shù)創(chuàng)作的表現(xiàn)語言。焊接通常是在高溫下進行的,而金屬在高溫下會產(chǎn)生許多美妙豐富的變化 :金屬母材會發(fā)生顏色變化和熱變形(即焊接熱影響區(qū)) ;焊絲熔化后會形成一些漂亮的肌理 ;而焊接缺陷在焊接藝術(shù)中更是經(jīng)常被應(yīng)用。焊接缺陷是指焊接過程中,在焊接接頭產(chǎn)生的不符合設(shè)計或工藝要求的缺陷。其表現(xiàn)形式主要有焊接裂紋、氣孔、咬邊、未焊透、未熔合、夾渣、焊瘤、塌陷、凹坑、燒穿、夾雜等。
其次,焊接藝術(shù)語言是獨特的。
上述種種焊接缺陷的表現(xiàn)形式以及焊接熱影響區(qū),是通過一定規(guī)范下的焊接操作形成的,也只有通過焊接的方式才會產(chǎn)生這些藝術(shù)語言。焊接藝術(shù)作品的表面效果是其它金屬加工工藝無法或者很難實現(xiàn)的,因而說焊接藝術(shù)具有獨特的藝術(shù)性。
選用不同的金屬材料,使用不同的焊接工藝,焊接的藝術(shù)性可以在不同的金屬藝術(shù)形式中發(fā)揮得淋漓盡致:
1. 金屬焊接雕塑
在焊接雕塑作品中,焊縫和割痕不是作為一種技術(shù)加工的痕跡被動地存在,而是以一種精彩的、不可或缺的表現(xiàn)語言著力地加以體現(xiàn)的。一件焊接雕塑,粗的焊縫裸露在雕塑表面,各種不規(guī)則的切割痕跡也變成了藝術(shù)家優(yōu)美的藝術(shù)語言……
2. 金屬焊接壁飾
如果把一幅壁飾作品看成一幅畫的話,畫面中的點、線、面、黑、白、灰甚至顏色的處理都可以通過焊接的方法來實現(xiàn)。各種型號、各種材質(zhì)的金屬絲,應(yīng)用不同的焊接工藝會在畫面上以不同的形式出現(xiàn)。
圖3所示作品采用的是手工等離子切割的方法,利用切割時電流的熱量,使切割邊緣產(chǎn)生熱影響區(qū),這樣就給亮白色的不銹鋼“染”上了一圈略帶漸變的色彩。同時,通過對焊接規(guī)范的調(diào)節(jié),割槍噴出的強烈氣流會在切割鋼板熔化的瞬間在切割邊緣“吹”起一圈隨機形成的肌理,在切割完成金屬冷卻后,固化為一道美麗的割痕,與中間平坦光亮的不銹鋼板材形成了質(zhì)感的對比。這種隨機效果的形成過程帶有一定的偶然性,但又是在一定的焊接規(guī)范下必然產(chǎn)生的現(xiàn)象。
從尺寸的角度考慮,尺寸較大的焊接藝術(shù)壁飾可采用半自動CO2氣體保護焊,較小的可采用手工鎢極氬弧焊。
焊接系統(tǒng)的特點
系統(tǒng)結(jié)構(gòu)特點
1. 機械裝置
點焊機系統(tǒng)由機械裝置、供電裝置、控制裝置三大部分組成。點焊機為了適應(yīng)焊接工藝要求,加壓機構(gòu)(焊鉗)采用了雙行程快速氣壓傳動機構(gòu),通過切換行程控制手柄改變焊鉗開口度,可分為大開和小開來滿足焊接操作要求。通常狀態(tài)為焊鉗短行程張開,當把控制按鈕切換到“通電”位置,扣動手柄開關(guān)則焊鉗夾緊加壓,同時電流在控制系統(tǒng)控制下完成一個焊接周期后恢復(fù)到短行程張開狀態(tài)。
2. 供電裝置
主電力電路由電阻焊變壓器、可控硅單元、主電力開關(guān)、焊接回路等組成。我們采用的焊接設(shè)備是功率200kVA、次級輸出電壓20V的單相工頻交流電阻焊機。由于多種車型共線生產(chǎn),焊鉗要焊接高強度鋼板和低碳鋼薄板,焊鉗槍臂要傳遞較大的機械力和焊接電流,因此焊鉗的強度、剛度、發(fā)熱要滿足一定要求,并且要具有良好的導(dǎo)電和導(dǎo)熱性,同時要求焊鉗采用通水冷卻,所以選擇焊鉗電極臂能夠承受400kg壓力的新型焊鉗。
3. 控制裝置
控制裝置主要提供信號控制電阻焊機動作接通和切斷焊接電流,控制焊接電流值,進行故障監(jiān)測和處理。
聲明:文章來源于網(wǎng)絡(luò),版權(quán)歸原作者或機構(gòu)所有